蔡枫

副教授 / 硕士生导师

所属平台:演化与基因组

研究领域:力于探究微生物生态学和真菌基因组学领域前沿问题,研究方向包括1)微生物分子生态学,研究滨海盐土和“塑料际”微生物群落组装和演化机制,基于合成生物学原理和生物工程手段,改造乃至创造具有特定功能的微生物和微生物群落;2)真菌生态基因组学,主要以模式真菌为材料探究真菌物种形成、适合度相关基因功能和基因组进化机制。

联系邮箱: caif8@mail.sysu.edu.cn

个人主页: https://www.researchgate.net/profile/Feng-Cai-9

基本信息

姓名:蔡枫

性别:男

职称:副教授

导师类型:硕士生导师

网页1:https://fungig.org

网页2:https://www.researchgate.net/profile/Feng-Cai-9

邮箱:caif8@mail.sysu.edu.cn

办公地址:中山大学(深圳校区)理学园,东216

研究方向

致力于探究微生物生态学和真菌基因组学领域前沿问题,研究方向包括1)微生物分子生态学,研究滨海盐土和“塑料际”微生物群落组装和演化机制,基于合成生物学原理和生物工程手段,改造乃至创造具有特定功能的微生物和微生物群落;2)真菌生态基因组学,主要以模式真菌为材料探究真菌物种形成、适合度相关基因功能和基因组进化机制。

微生物生态学与合成微生物组(按字母排序): 

Amplicon sequencing, Biodiversity, Coastal Ecosystem, DNA Barcoding, Environmental Microbiology, Fungal-Bacterial Interaction, Fungal-Plant Interaction, Hyphosphere, Microbial Culturomics, Microbial Dispersal, Microbiome, Plastic Biodegradation, Tidal Salt Marshes

真菌基因组学与进化(按字母排序): 

Bioeffectors, CRISPR/Cas9 Gene Edition, Ecological Genomics, Fitness, Functional Genetics, HFB, Microcosm Studies, Molecular Evolution, Model Filamentous Fungi (Neurospora, Aspergillus, Trichoderma), NRPS, PKS, NRPS-PKS, Phylogenetic Reconstruction, Protein Modeling and Engineering, Selection Pressure, Speciation, Taxonomy, Pichia pastoris Cell Factory, RNA-seq, SSCP, Saline Agriculture

教育背景

2014 - 2021,维也纳理工大学(TU Wien,奥地利),环境与生物工程学院,微生物学,理学博士(说明:2017-2020期间,第一轮博士后)

08. 2019,芝加哥大学(美国),海洋生物学实验室(MBL),分子进化,高阶训练

2011 - 2017,南京农业大学,资源与环境科学学院(硕博连读),植物营养学,农学博士

2007 - 2011,南京农业大学,资源与环境科学学院,农业资源与环境,学士

工作经历

2021 - 至今,中山大学,生态学院,副教授

2017 - 2021,南京农业大学,资源与环境科学学院,生态学系,博士后

学术兼职

2021 - 至今,Applied and Environmental Microbiology,编委

2020 - 至今,国际真菌分类学在线网站www.outlineoffungi.org,肉座菌目Curator

2017 - 至今,Applied and Environmental Microbiology, Applied Soil Ecology, Bioresource Technology, Journal of Fungi, Journal of Agricultural and Food Chemistry, mSystem, Mycologia, Molecules, Microbiology Spectrum, 生态学报, 土壤学报等期刊,审稿人

国际会议

05.2021,Talk:真菌表面疏水性与其环境适应性间的进化权衡及其对物种形成的影响,第13届中国模式真菌研讨会,中国 武汉

02.2020,Talk:Never shall those born to crawl, learn to fly: Evolutionary compromises between spore hydrophobicity and fitness in fungi,第15届欧洲真菌遗传学大会(ECFG15),意大利 罗马

03.2019,Talk:Hydrophobins influence fungal fitness by modulating spore dispersal and survival,第30届国际真菌遗传学大会,2019年3月,美国加州Asilomar

主要奖励

2021,维也纳理工大学优秀博士学位论文(Dr. rer. nat mit Auszeichung bestanden),奥地利 维也纳

2020,Publons TOP20审稿人,Applied and Environmental Microbiology(AEM)

2020,第15届欧洲真菌遗传学大会(ECFG15),最佳海报奖,意大利 罗马

主持/参与项目

2019 - 2021,木霉菌疏水小蛋白家族基因功能及其与根系定殖力的耦联关系,国家自然科学青年基金项目(25万元),31801939,主持

2019 - 2020,木霉菌NJAU 4742的hfb基因功能研究,中国博士后科学基金面上项目(10万),2018M630567,主持

2018 - 2020,木霉Harzianolide的合成途径和生物学功能研究(25万元),国家自然科学青年基金项目(25万元),31701992,参与

2018 - 2023,国际合作项目:Trichoderma whole genus genomics project,美国能源部Joint Genome Institute (JGI),Module coordinator

发明专利

[1] 蔡枫,丁明月,伊瑞娜·杜鲁兹尼娜.专利号:ZL202010377558.7,一株耐盐碱的新木霉及其应用,发明专利,授权时间:2022年02月18日,中国

[2] 丁明月,蔡枫,陈巍,伊瑞娜·杜鲁兹尼娜.专利号:ZL202010378203.X,一株耐盐碱拟棘孢木霉及其应用,发明专利,授权时间:2021年11月09日,中国

[3] 沈其荣,张杨,李荣,蔡枫,张建,庞冠.专利号:ZL201810768488.0,两步基因组比较法设计贵州木霉NJAU 4742定量PCR特异性引物的方法,发明专利,授权时间:2019年12月27日,中国

[4] 沈其荣,蔡枫,黄启为. 专利号:ZL201610235081.2,一种促进哈茨木霉定殖的蛋白及其应用,发明专利,授权时间:2017年09月12日,中国

代表性论著

[1] Cai F.*, Dou K., Wang P., Chenthamara K., Chen J., Druzhinina I. S. The current state of Trichoderma taxonomy and species identification. Amaresan N., Sankaranarayanan A., Dwivedi M. K., Druzhinina I. S., eds. Advances in Trichoderma Biology and Applications, Springer Nature, 2022. in press

[2] Cai, F., Kubicek, C. P., Druzhinina, I. S.* Biofuels and Biodiesel: Genetic transformation of Trichoderma spp. Chhandak B., ed. Methods in Molecular Biology, Springer Nature, 2021. pp 171-186

[3] Chenthamara, K., Rahimi, M., Grujic, M., Druzhinina, I. S., Cai, F.* Trichoderma reesei – Methods and Protocols: Chapter 1 Ecological genomics and evolution of Trichoderma reesei. Mach-Aignar, A., and Martzy, R., eds. Methods in Molecular Biology, Springer Nature, 2021. pp 1-21

[4] Rahimi, M., Cai, F., Grujic, M., Chenthamara, K., Druzhinina, I. S.* Trichoderma reesei – Methods and Protocols: Chapter 14 Molecular identification of Trichoderma reesei. Mach-Aignar, A. and Martzy, R., eds. Methods in Molecular Biology, Springer Nature, 2021. pp 157-175

[5] Chen, P.J., Pang, G., Cai, F., Druzhinina, I. S.* 2021. Strain improvement and genetic engineering of Trichoderma for industrial applications. Zaragoza O., and Casadevall A., eds. Encyclopedia of Mycology, Elsevier, 2021. pp 505-517

代表性论文(†,并列一作;*,通讯)

[1] Yuan, Z.†*, Wu, Qi.†, Xu, L.†, Druzhinina, I.S.†, Stukenbrock, E. H., Nieuwenhuis, B.P.S., Zhong, Z., Liu, Z.,-J., Wang, X., Cai, F., Kubicek, C.P., Shan, X., Wang, J., Shi, G., Peng, L., Martin, F.M.* Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism. The ISME Journal. 2022, 16: 1294-1305

(IF= 10.302)

[2] Wijayawardene, N.N., Phillips, A.J.L., Pereira, D.S., Dai, D.Q.*, Aptroot, A., & Monteiro, J.S., Monteiro, J.S.,·Druzhinina, I.S., Cai, F., Fan, X.,·Selbmann, L., Coleine, C., Castañeda‑Ruiz, R.F., Kukwa, M.,·Flakus, A., ·Fiuza, P.O., Kirk, P.M., Kumar, K.C.R., ·Arachchi, I.S.l.,·Suwannarach, N., Tang, L.‑Z.*, Boekhout, T., Tan, C.S., Jayasinghe, R.P.P., Thines, M. Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity, 2022, 1-28

(IF= 20.372)

[3] Zhang, J., Chen, J., Wu, Y.-F., Qiu, J.-G., Li, X.-L., Cai, F., Xiao, K.-Q., Sun, X.-X., Rosen, P. B., Zhao, F.-J.* 2021. Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Environmental Microbiology. 2022, 24(2): 752–761

(IF= 5.491)

[4] Chen, S.†, Daly, P.†*, Zhou, D., Li, J., Wang, X., Deng, S., Feng, H., Wang, C., Sheikh, T.M.M., Chen, Y., Xue, T., Cai, F., Kubicek, C.P., Wei, L.*, Druzhinina, I.S.* The use of mutant and engineered microbial agents for biological control of plant diseases caused by Pythium: Achievements versus challenges. Fungal Biology Reviews. 2022, 40:76-90

(IF= 4.706)

[5] Cai, F.†, Zhao, Z.†, Gao, R., Chen, P., Ding, M., Jiang, S., Fu, Z., Xu, P., Chenthamara, K., Shen, Q.*, Bayram-Akcapinar, G., Druzhinina, I.S.* The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genetics. 2021, 17(11): e1009924 

(IF= 5.917)

[6] Cai, F., Druzhinina, I. S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity. 2021, 107: 1-69

(IF= 20.372)

[7] Daly, P., Cai, F., Kubicek, C.P., Jiang, S., Grujic, M., Rahimi, M.J., Sheteiwy, M.S., Giles, R., Riaz, A., de Vries, R.P., Bayram-Akcapinar, G.*, Wei, L.*, Druzhinina, I. S.* From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnology Advances. 2021, 50: 107770

(IF= 14.227)

[8] Yuan, Z.*, Druzhinina, I.S., Gibbons, J.G., Zhong, Z., de Peer, Y.V., Rodriguez, R.J., Liu, Z., Wang, X., Wei, H., Wu, Q., Wang, J., Shi, G., Cai, F., Peng, L., Martin, F.M.* Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus. The ISME Journal. 2021, 15: 3468-3479 

(IF= 10.302)

[9] Li, Y., Sun T., Guo, D., Gao, J., Zhang, J., Cai, F., Fischer, R., Shen, Q.*, Yu, Z*.  Comprehensive analysis of the regulatory network of blue-light-regulated conidiation and hydrophobin production in Trichoderma guizhouense. Environmental Microbiology. 2021, 23(10): 6241-6256 

(IF= 5.491)

[10] Zhao, Z., Cai, F.*, Gao R., Ding, M., Jiang, S., Chen, P.J., Pang, G., Chenthamara, K., Shen, Q., Bayram-Akcapinar, G.*, Druzhinina, S. I.* At least three families of hyphosphere small secreted cysteine-rich proteins can optimize surface properties to a moderately hydrophilic state suitable for fungal attachment. Environmental Microbiology. 2021, 23(10): 5750-5768

(IF= 5.491)

[11] Cai, F., Gao, R., Zhao, Z., Ding, M., Jiang, S., Yagtu, C., Zhu, H., Zhang, J., Ebner, T., Mayrhofer-Reinhartshuber, M., Kainz, P., Chenthamara, K., Bayram-Akcapinar, G., Shen, Q.*, Druzhinina, I. S.* Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of spores and challenge their survival. The ISME Journal. 2020, 14:2610-2624 

(IF= 10.302)

[12] Gao, R., Ding, M., Jiang, S., Zhao, Z., Chenthamara, K., Shen, Q. Cai, F.*, Druzhinina I.S. The evolutionary and functional paradox of cerato-platanins in the mycoparasitic fungi. Applied and Environmental Microbiology. 2020, 86:e00696-20 

(IF= 4.792)

[13] Ding, M.†, Chen, W.†, Ma, X., Lv, B., Gao, R., Jiang, S., Zhao, Z., Cai, F.*, Druzhinina, I. S. Emerging salt marshes as a source of Trichoderma arenarium sp. nov. and other fungal bioeffectors for biosaline agriculture. Journal of Applied Microbiology. 2020, 130: 179-195 

(IF= 3.772)

[14] Zhang, J., Miao, Y., Rahimi, M.J., Zhu, H., Steindorff, A., Schiessler, S., Cai, F., Pang, G., Chenthamara, K., Xu, Y., Kubicek, C.P., Shen, Q.*, Druzhinina, I.S.* Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environmental Microbiology. 2019, 21(8): 2644-2658 

(IF= 5.491)

[15] Jiang, S.-Q.†, Yu, Y.-N.†, Gao, R.-W., Wang, H., Zhang, J., Li, R., Long, X.-H., Shen, Q.-R., Chen, W.*, Cai, F. High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil. Science of the Total Environment. 2019, 687: 601-609 

(IF= 7.963)

[16] Kubicek, C. P.†, Steindorff, A. S.†, Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A. G., Kubicek, E. M., Kuo, A., Baroncelli, R., Sarrocco, S., Noronha, E. F., Vannacci, G., Shen, Q.*, Grigoriev, I. V.*, Druzhinina, I. S.* Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics. 2019, 20 

(IF= 3.969)

[17] Druzhinina, I. S.*, Chenthamara, K., Zhang, J., Atanasova, L., Yang, D., Miao, Y., Rahimi, M. J., Grujic, M., Cai, F., Pourmehdi, S., Salim, K. A., Pretzer, C., Kopchinskiy, A. G., Henrissat, B., Kuo, A., Hundley, H., Wang, M., Aerts, A., Salamov, A., Lipzen, A., LaButti, K., Barry, K., Grigoriev, I. V., Shen, Q.*, Kubicek, C. P. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genetics. 2018, 14:e1007322 

(IF= 5.917)

[18] Przylucka A., Bayram Akcapinar G., Chenthamara K., Cai F., Grujic M., Karpenko J., Livoi M., Shen, Q., Kubicek, C. P., Druzhinina I. S.* HFB7- A novel orphan hydrophobin of the Harzianum and Virens clades of Trichoderma, is involved in response to biotic and abiotic stresses. Fungal Genetics and Biology. 2017, 102: 63-76

(IF= 3.495)

[19] Cai, F.†, Pang, G.†, Li, R.-X., Li, R., Gu, X.-L., Shen, Q.-R., Chen, W.* Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping. Biology and Fertility of Soils. 2017, 53: 861-872 

(IF= 6.432)

[20] Cai, F.†, Pang, G.†, Miao, Y., Li, R., Li, R., Shen, Q., and Chen, W.* The nutrient preference of plants influences their rhizosphere microbiome. Applied Soil Ecology. 2017, 110:146-150

(IF= 4.046)

[21] Pang, G., Cai, F., Li R., Zhao Z., Li R., Gu X., Shen Q., Chen W.* Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant and Soil. 2017, 416: 181-192

(IF= 4.192)

[22] Cai, F., Chen, W., Wei, Z., Pang, G., Li, R., Ran, W., and Shen, Q.* Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant and Soil. 2015, 388: 337-350

(IF= 4.192)

[23] Li, R.-X.†, Cai, F.†, Pang, G., Shen, Q.-R., Li, R., Chen, W.* Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE. 2015, 10: e0130081

(IF= 3.240)

[24] Cai, F., Yu, G., Wang, P., Wei, Z., Fu, L., Shen, Q., and Chen, W.* Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiology and Biochemistry. 2013, 73: 106-113 

(IF= 4.270)